

BOOSTING OF PROSODIC AND PRONUNCIATION FEATURES TO DETECT MISPRONUNCIATIONS OF NON-NATIVE CHILDREN

Christian Hacker¹, Tobias Cincarek², Andreas Maier¹, André Heßler¹, Elmar Nöth¹ ¹Institute for Pattern Recognition (LME), University of Erlangen-Nuremberg, Germany ²Graduate School of Information Science, NAIST, Nara, Ikoma, Japan

(1)

Outline

- German children reading English
- Acoustic models: trained on the Pf-Star native corpus (children from Birmingham)
- Pronunciation scoring with 176 features

Features from Prosody/Pronfex Module Feature selection with AdaBoost

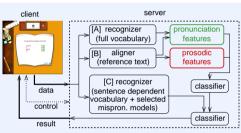


Figure 1: Caller: Computer assisted language learning from Erlangen. Here: Focus on paths via [A] and [B]

Non-Native Data

- 28 children, age 10-11 (English as 2nd lang. since 6 months) • 72 min; vocabulary: 8088 tokens, 942 types
- reading errors, repetitions, word fragments, non-verbals

10 Raters:

- 1 graduate univ. student of English
- 8 German teachers of English marked words
- where they would have stopped the student in school
- 1 native British teacher (N)
- strictness of raters: 4.4 % 5.2 %; N: 7.6 % marked as errors

Reference:

Marked if at least 3 experts agree (5.6%, cf. strictness)

Class-wise-averaged recognition rate:

 $CL = 0.5(REC_w + REC_c)$ (= av. Recall) c: correctly pronounced; w: wrongly pronounced

Aareement:

- rater vs. reference : CL = 77 % (open average)
- pairs of raters: inter-rater: CL = 70 %; intra-rater.: 78 80 %
- $REC_w \le 78\%$; $REC_c \le 99\%$

AdaBoost

• Select weak classifiers $h_t(.)$ that use complementary info

- Here: each $h_{\star}(.)$ is trained on exactly 1 feature
- $h_{t}(x) = 1$ if mispronounced: 0 else

1. Optimal threshold for each $h_t(.)$ (criterion: CL)

- 2. A weight $w_{0,i}$ is assigned to each word *i* of the training data. Weights of either class are distributed uniformly and sum up to 0.5.
- 3. Choose the weak classifier $h_t(.)$ with lowest error ϵ_t : Words that are wrongly classified contribute with $w_{t,i}$ to the error.
- 4. Use greater weights for all wrongly classified words:

$$w_{t+1,i} = w_{t,i} \frac{1 - \epsilon_t}{\epsilon_t}$$
; $\alpha_t = \log(\frac{1 - \epsilon_t}{\epsilon_t})$

5. Normalize the weights; t = t + 1; goto 3.

6. Finally, combination to a strong classifier:

$$x$$
 is mispronounced, if $\sum_{t} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t} \alpha_t$ (2)

■ Leave-one-speaker-out (loo) evaluation

Calculate **mean** α_{i} for each feature over 28 loo-iterations to get this ranking:

Forced alignment	PhoneConf Likelihood Confidence	Mean per word: $1/N \sum_{j=1}^{N} c_j$ Word score Posterior score [-1,0]	Energy: lowest FFT coeff.
Speech recognizer Phone bigram prob.	ProsEnergy Duration Confidence	FFT coefficient 1 Deviation of phones (scatter) Posterior score of reference word	mean/min in preceding/succ. words
of recognized phone sequence	ProsEnergy ProsPitch PhoneSeq	FFT coefficient 0 Regression of the <i>f</i> ₀ [-1,0] Bigram prob. of phones / #phones	Duration
Phone confusion $c_j = < \cdots$ $P(q_j p_j, M_w) / P(q_j p_j, M_c)$	ProsPosition ProsEnergy ProsDuration	Position of the max. <i>f</i> ₀ [1,1] Minimum [-2,-1] Normalized [-1,0]	Pitch/F0 :
q_j recognized phone p_j phone in reference $j = 1 \dots N$: Index of phone	PhoneConf ProsEnergy PhoneConf	Maximum per word: $\max_j c_j$ Mean [1,2] Minimum per word: $\min_j c_j$	slope (prec. word); position of max. (succ. word)

Figure 2: Top 15 features selected with AdaBoost

Features Extraction

- Recognized word chain, cf. Fig. 1 [A] native models, LME-recognizer, 46 % word acc. 2500 additional mispronunciation models
- Forced alignment, cf. Fig. 1 [B]
- Duration and Energy statistics estimated on native data
- Phoneme bigram model
- · estimated on reference texts plus further data

Phone confusion statistics on

- mispronounced words M_{w}
- correctly pronounced words M_c

The Pronfex Module (63 features)

- Rate-of-speech, long pauses
- Duration (deviation from native statistics)
- Log-likelihood of reference word
- Word/phone accuracy and correctness
- Confidence of reference (N-best lists)
- Phone bigram probability
- Phone confusion using M_{μ} and M_{c}

The Prosody Module (113 features)

- Pitch (F0), energy, duration, jitter, shimmer, pauses (e.g. min, max, mean, regression)
- Position of maxima, minima, on-set, ...
- FFT coefficients of the energy
- Context: preceding word [-1,-1], 2 succ. words [1,2]

Results

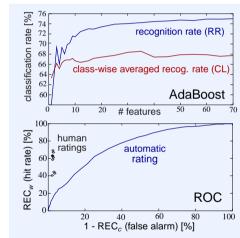


Figure 3: Classification rate with different numbers of features: ROC evaluation with 35 features

- Low CL with prosodic features, but useful extension to pronunciation features
- Best feature: phone confusion
- AdaBoost: No overfitting to training data
- Similar feature sets are selected
- in all loo-iterations
- using different references/experts
- 15 features: 66.7 % CL 35 features: 68.6 % CL
- \rightarrow 89 % of human expert agreement
- Teachers have high agreement on correct words (low hit rate on mispron.'s)

