TAKING INTO ACCOUNT THE USER'S FOCUS OF ATTENTION WITH THE HELP OF AUDIO-VISUAL INFORMATION: TOWARDS LESS ARTIFICIAL HUMAN-MACHINE-COMMUNICATION Where can I meet

Anton Batliner¹, Christian Hacker¹, Moritz Kaiser², Hannes Mögele², Elmar Nöth¹

¹Institute for Pattern Recognition, University of Erlangen-Nuremberg, Germany

²Bavarian Archive for Speech Signals, Munich, Germany

²Institute for Phonetics and Speech Processing, Munich, Germany

SmartWeb:

- Multimodal access to the semantic web
- Scenario handheld:
- User is interacting via a smart-phone
- Speech input is analysed on the server

No push-to-talk

- Automatic recognition whether the user addresses the system (On-Focus) or talks to s.o. else (Off-Talk, Off-View)
- Analysis of prosody, linguistic info, and images of the camera integrated in the mobile phone

The SmartWeb Video Corpus

- 3.2 hours of speech. 2068 utterances (Bluetooth. UMTS. 8 kHz. 8 bit)
- 14 hours of video (H.263, camera of Nokia 6680 cell phone)
- Recording location: real life situations with varying degree of acoustic and visual noise
- Total # of speakers: 100; test set: 37

	On-View	Off-View				
NOT	On-Focus , Interaction	(unusual)				
(On-Talk)	with the system					
ROT	Reading aloud from	—				
(Off-Talk)	the display					
POT	(unusual)	Reporting results from				
(Off-Talk)		SmartWeb				
SOT	Responding to an	Responding to an				
(Off-Talk)	interruption	interruption				
Tab.1: Cross-tabulation of On-/Off-Talk vs. On-/Off-View						

- NOT: Talking to the system, On-Talk (50%)
- ROT: Read Off-Talk (13%)

Friedrich-Alexander-Universität Erlangen-Nürnberg

- POT: Paraphrasing Off-Talk (11%)
- SOT: Spontaneous Off-Talk (26 %)

Data Collection:

- Situational Prompting technique (SitPro) with 2 subjects: the caller and the companion
- -Elicitation method based on standard prompts. individualised prompts, script prompts (simulating a conversation)
- Companion had to disturb the caller to elicit POT
- Annotation of the data:
- Audio (word based): NOT, ROT, POT, SOT.
- Mapping to utterance level (dialogue turn)
- -Video (frame based): On-View, Off-V., No-Face
- Semi-automatic segmentation of faces

Evaluation: Class-wise average recognition rate: CL = Mean of recalls 2-class case: 0.5 (sensitivity + specifity)

Prosodic Features (word based)

100 prosodic features per word

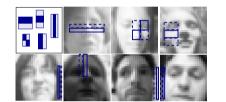
based on fundamental frequency, energy, duration, rate-of-speech, pauses, jitter, and shimmer

- ■66 % CL for On-Talk vs. Off-Talk
- ■48% CL for NOT/ROT/POT/SOT

POT is hard to recognise with prosody

Linguistic Features (word based)

- ■30 features describing the part-ofspeech (POS) categories of ±2 words
- 6 POS cover classes:


Nouns, verbs, auxiliaries, adjectives and participles (inflected/not inflected), PAJ (particles, articles, and interjections)

Learning of POS sequences (domain independent!)

- Observation: Many nouns and adjectives for ROT; many PAJ for SOT
- 59 % CL for On-Talk vs. Off-Talk


■45% CL for NOT/ROT/POT/SOT

Face Detection (frame based)

- Classification of grayscale images (176 × 144, 7.5) per sec.) by applying the Viola-Jones algorithm (Haar-wavelets, looking for faces in plenty of sub-images scaled to 24 × 24, hierarchical classifier)
- Training with 18.000 images
- Selection of 425 features with Adaboost
- Learning of perspective distortion, backlight, etc.
- ■88 % CL for On-View vs. Off-View (Default Open-CV classifier: 81 % CL)

Fusion

- -Calculation of meta-features
- Calculation of 40 meta-features
- -% frames On-View
- -% frames On-View after smoothing of the On-View contour
- -% frames On-view in the beginning of the turn
- Av. word score for NOT. ROT. POT. SOT. resp.
- -Max. word score for NOT. ROT. POT. SOT. resp. -# frames, # words
- -% content words, % function words (PAJ)
- Av. number of graphemes per word, etc.

Experimental Results

	Pros.	POS	Video	CL in %	CL in %		
				2-class case	4-class case		
	٠			76.6	62.4		
		•		76.0	61.0		
			•	70.5	45.1		
	•	•		80.8	68.4		
	٠		•	79.7	66.8		
		•	•	78.9	68.2		
	٠	•	•	84.5	72.3		
Tab.2: Classification of On-Focus vs. Off-Focus and							

On-Focus vs. ROT vs. POT vs. SOT

Conclusion

- Multimodal fusion for the classification of the focus of attention
- Classification with meta-features
- Markedly better results than uni-modal modelling
- Good performance, even if the underlying speech recogniser has low word accuracy: 20 % WA \rightarrow 72 % CL: 70 % WA \rightarrow 82 % CL

