Automatic Assessment of Children Speech to Support Language Learning

10th of June, 2009

Christian Hacker

Lehrstuhl für Mustererkennung
Technische Fakultät
Friedrich-Alexander Universität Erlangen-Nürnberg

Introduction

CALL: Computer aided language learning

■ CAPT: Computer aided pronunciation training

Co-operation with the Ohm-Gymnasium, Erlangen

Introduction

- CALL: Computer aided language learning
- CAPT: Computer aided pronunciation training

Introduction

- CALL: Computer aided language learning
- CAPT: Computer aided pronunciation training

1 CALL Applications

- 1 CALL Applications
- 2 Corpus and Annotations

- 1 CALL Applications
- 2 Corpus and Annotations
- 3 Agreement of Experts

- 1 CALL Applications
- 2 Corpus and Annotations
 - 3 Agreement of Experts
- 4 Approaches for the Automatic Assessment

- 1 CALL Applications
- 2 Corpus and Annotations
- 3 Agreement of Experts
- 4 Approaches for the Automatic Assessment
- 5 Experimental Results

- 1 CALL Applications
- 2 Corpus and Annotations
- 3 Agreement of Experts
- 4 Approaches for the Automatic Assessment
- 5 Experimental Results

Computer Aided Language Learning

- Many commercial CALL systems exist
- Focus on reading, listening comprehension, writing
- Pronunciation training still requires
 - better automatic speech recognition (ASR) for non-natives
 - more robust pronunciation scoring algorithms

Computer Aided Language Learning

- Many commercial CALL systems exist
- Focus on reading, listening comprehension, writing
- Pronunciation training still requires
 - better automatic speech recognition (ASR) for non-natives
 - more robust pronunciation scoring algorithms

Caller

Computer Assisted Language Learning from Erlangen

- 1 CALL Applications
- 2 Corpus and Annotations
 - 3 Agreement of Experts
- 4 Approaches for the Automatic Assessment
- 5 Experimental Results

Corpus and Annotations

Pf-Star Non-Native Corpus (3.2 hrs. recorded in Erlangen)

- German children speaking English
- Vocabulary: 934 words
- Realistic speech containing repetitions of words, word fragments, non-verbal sound

Corpus and Annotations

Pf-Star Non-Native Corpus (3.2 hrs. recorded in Erlangen)

- German children speaking English
- Vocabulary: 934 words
- Realistic speech containing repetitions of words, word fragments, non-verbal sound

Focus on part of the data (1.2 hrs.)

- 28 children age 10 11 (learning English in their 1st year)
- Annotated by 14 experts
- Evaluation: leave-one-speaker-out

Corpus and Annotations

Pf-Star Non-Native Corpus (3.2 hrs. recorded in Erlangen)

- German children speaking English
- Vocabulary: 934 words
- Realistic speech containing repetitions of words, word fragments, non-verbal sound

Focus on part of the data (1.2 hrs.)

- 28 children age 10 11 (learning English in their 1st year)
- Annotated by 14 experts
- Evaluation: leave-one-speaker-out

Pf-Star Native Corpus (7.8 hrs. recorded in Birmingham)

■ British children age 4 – 14

Ratings by 14 Experts

Experts:

 $\begin{array}{ccc} \textbf{S} & \text{German student of English (graduate level)} \\ \textbf{T_{1}} & \textbf{T_{7}} & \text{German teachers of English} \\ \textbf{T_{8}} & \textbf{T_{12}} & \text{German student teachers of English} \\ \textbf{N} & \text{Teacher, native speaker of English} \\ \end{array}$

Instructions:

- S: "Mark all phone deviations"
- T_i, N: "Mark words, where you would have stopped the student in class"

Ratings by 14 Experts

Experts:

```
 \begin{array}{ccc} \textbf{S} & \text{German student of English (graduate level)} \\ \textbf{T_{1}} & \textbf{T_{7}} & \text{German teachers of English} \\ \textbf{T_{8}} & \textbf{T_{12}} & \text{German student teachers of English} \\ \textbf{N} & \text{Teacher, native speaker of English} \\ \end{array}
```

Instructions:

- S: "Mark all phone deviations"
- T_i, N: "Mark words, where you would have stopped the student in class"

Ratings:

```
Word-level X (wrongly), O (correctly pronounced)
Sentence-level Grades 1 (best) – 5 (worst) (only S)
Text-level Grades 1 (best) – 5 (worst)
```

Text: on average 11 sentences

Liz [000000000] it's [000000000] one [000000000] o'clock [000000000]

Sentence: Grade 2

Liz [000000000] it's [00000X000] one [X0000X000] o'clock [0000000000]

Sentence: Grade 3

Liz [X00000000] it's [00000000X] one [XXXXXXXXXX] o'clock [000000X00]

Sentence: Grade 5

S (graduate student), T₁ - T₇, N (native teacher)

- 1 CALL Applications
- 2 Corpus and Annotations
- 3 Agreement of Experts
- 4 Approaches for the Automatic Assessment
- 5 Experimental Results

Agreement Measures

Strictness:

- % words marked as mispronounced (X)
- 3.7% 7.3%, average: 4.9%
- Robust reference: X, if at least 3 vote with X (5.3%)

Agreement Measures

Strictness:

- % words marked as mispronounced (X)
- 3.7% 7.3%, average: 4.9%
- Robust reference: X, if at least 3 vote with X (5.3%)

Pearson correlation ρ :

- Sentence-/text-level
- Measures the linear relation between expert/system and reference
- Robust reference: average grade

Agreement Measures

Strictness:

- % words marked as mispronounced (X)
- 3.7% 7.3%, average: 4.9%
- Robust reference: X, if at least 3 vote with X (5.3%)

Pearson correlation ρ :

- Sentence-/text-level
- Measures the linear relation between expert/system and reference
- Robust reference: average grade

Class-wise averaged classification rate (CL)

Classification rate with tolerance

Agreement Measures (cont.)

Class-wise averaged classification rate (CL)

$$CL-K := \frac{HR_1 + \ldots + HR_K}{K}$$
, K : number of classes

Hit-rate HR_i: % of all i that are correctly classified

- Word: *K* = 2
- Sentence/Text: *K* = 5

Agreement Measures (cont.)

Class-wise averaged classification rate (CL)

$$CL-K := \frac{HR_1 + \ldots + HR_K}{K}$$
, $K : number of classes$

Hit-rate HR_i : % of all i that are correctly classified

- Word: *K* = 2
- Sentence/Text: *K* = 5

Classification with tolerance (CL-10±2)

- Use average grades of 14 experts
- Map continuous grades onto 10 classes (histogram equalisation)

Evaluation of the Experts

		intra-rater
Word-level	CL-2	78%
Text-level	CL-5	50 %
	CL-10±2	78 %
	ρ	0.71

■ Intra-rater: 2nd evaluation half a year later

Evaluation of the Experts

		intra-rater	inter-rater (1 vs. rest)
Word-level	CL-2	78%	76 %
Text-level	CL-5	50 %	56 %
	CL-10±2	78 %	80 %
	ρ	0.71	0.76

■ Intra-rater: 2nd evaluation half a year later

- 1 CALL Applications
- 2 Corpus and Annotations
- 3 Agreement of Experts
- 4 Approaches for the Automatic Assessment
 - Robust Speech Recognition
 - Approach 1: Mispronunciation Models
 - Approach 2: Prosodic and Pronunciation Features
 - Evaluation with Native Models
- 5 Experimental Results

Recognition of Children Speech

Problem:

- Robust ASR is required for automatic pronunciation scoring
- Higher word error rates (WER) for children

- Adapt acoustic models to children speech (MAP, MLLR)
- Warp children speech to better fit to adult acoustic models (VTLN)
- Children speech recogniser with optimised feature extraction

Recognition of Children Speech

Problem:

- Robust ASR is required for automatic pronunciation scoring
- Higher word error rates (WER) for children

- Adapt acoustic models to children speech (MAP, MLLR)
- Warp children speech to better fit to adult acoustic models (VTLN)
- Children speech recogniser with optimised feature extraction

[WER]	VM	Birm.	Non-Nat.
Training: adults (VM = Verbmobil)	35%	85%	73 %
Training: adults, Adaptation to Birm.		37%	64 %
Training: children (Birmingham)		23%	44%

Recognition of Non-Native Speakers

Problem:

- High WER for non-native speech
- Avoid adaptation to wrongly pronounced non-native data

- ASR trained on native speakers (Birmingham + Youth)
- Add excellent non-native speakers to the training

Recognition of Non-Native Speakers

Problem:

- High WER for non-native speech
- Avoid adaptation to wrongly pronounced non-native data

- ASR trained on native speakers (Birmingham + Youth)
- Add excellent non-native speakers to the training

[WER]	Birm.	Non-Nat.
Training: children (Birmingham)	23 %	44 %
Training: children (Birm., Youth, Non-Nat.)	28%	36 %

Approach 1: Mispronunciation Models

- Add acoustic models with expected wrong pronunciation
- → Wrongly pronounced phone can be found
- Lexicon (example):

```
this /TIs/
this~e10 /sIs/
```

- Design of 44 rules
- Systematic application of rules to the vocabulary

Approach 1: Mispronunciation Models

- Add acoustic models with expected wrong pronunciation
- → Wrongly pronounced phone can be found
- Lexicon (example):

```
this /TIs/
this~e10 /sIs/
```

- Design of 44 rules
- Systematic application of rules to the vocabulary

```
cab
/..b/ \rightarrow /..p/
/..d/ \rightarrow /..t/
                     feed
/..q/ \rightarrow /..k/
                     bia
/Ng/ \rightarrow /N/
                     finger
   /r/ \rightarrow /R/
                     right
  /T/ \rightarrow /s/
                     think
 /st/ \rightarrow /St/
                     stall
/..z/ \rightarrow /..s/
                     peas
/dZ/ \rightarrow /tS/
                     age
  /v/ \rightarrow /f/
                     give
 /w/ \rightarrow /v/ what
  /v/ \rightarrow /w/ very
 /Q/ \rightarrow /Q:/ office
 /aI/ \rightarrow /I/ rise
  /3/ \rightarrow /e@/ early
```

App. 2: Prosodic and Pronunciation Features

- Text and language independent approach
- Prosodic features: how something is said
- Pronunciation features: in particular based on ASR
- AdaBoost: Feature selection (complementary information)
- Classification: AdaBoost/LDA

Word Based Features

Word-Level Assessment

Word-Level Assessment

Forced Alignment

Speech Recognition

Word-Level Assessment

Forced Alignment

Speech Recognition

√

Word-Level Assessment

■ 75 pronunciation features and 124 prosodic features per word

Evaluation with Native Models

Sentence-Level Assessment

- Special sentence-level pronunciation and prosodic features (449)
- Mahalanobis distance from native speakers
- Convert distance values into scores; feature selection with AdaBoost
- Non-native data only required for validation

Outline

- 1 CALL Applications
- 2 Corpus and Annotations
- 3 Agreement of Experts
- 4 Approaches for the Automatic Assessment
- 5 Experimental Results
 - Word-Level Assessment
 - Text-Level Assessment

Feature Groups selected with AdaBoost

√

Word-Level Results

40 features, selected with AdaBoost:

fundamental frequency

other: pauses, jitter, shimmer

other: accuracy, confidence

Features selected with AdaBoost

Top word-level features:

- 1 **phone confusion**: minimum
- 2 log-likelihood: mean over phonemes
- 3 duration: expected / observed
- 4 **energy**: mean
- 5 energy: FFT coefficient of the en. contour

Top sentence-level features:

- 1 pauses: total duration of long pauses
- 2 log-likelihood: mean over phonemes
- 3 **phone confusion**: minimum
- 4 fundamental frequency: maximum of word based minima
- 5 energy: mean of normalised words

Features selected with AdaBoost (cont.)

Word-Level Results

Word "thirteen": Speakers 1–6 Wrong pronunciation (X) highlighted with colours

Features selected with AdaBoost (cont.)

Word-Level Results

Word "thirteen": Speakers 1–6 Wrong pronunciation (X) highlighted with colours

good	pronunciation		bad
phone confusion 1 (X) 2	3 4 (X)	5 (X)	6
likelihood 6 1 (X)	3 2	4 (X)	5 (X)
duration 2	4 (X) 3	5 (X)	1 (X)

Word-Level Results

- Mispronunciation models: low WER important.
- $69.7\% \rightarrow 71.4\%$: significance level 0.05

ROC-Evaluation

√

Word-Level Results

Text-Level Results

Text-Level Results (cont.)

Summary

- Pf-Star non-native corpus, annotations by 14 experts
- Speech recognition for non-native children
- Algorithms for automatic assessment:
 - Mispronunciation models
 - Pronunciation and prosodic features
 - Distance from native data

Summary

- Pf-Star non-native corpus, annotations by 14 experts
- Speech recognition for non-native children
- Algorithms for automatic assessment:
 - Mispronunciation models
 - Pronunciation and prosodic features
 - Distance from native data
- Still room for improvement
- Text-Level: Closed to human performance
- Word-Level: Too many false alarms → concentrate on important words

Thank you for your attention.